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Abstract
We present a computational study by density functional theory (DFT) of entire silicon nanorods
with up to 1648 atoms without any periodicity or symmetry imposed. The nanorods have been
selected to have varying aspect ratios and levels of surface passivation with hydrogen. The
structures of the nanorods have been optimized using a density functional tight-binding
approach, while energies and electronic properties have been computed using linear-scaling
DFT with plane-wave accuracy with the ONETEP (Skylaris et al 2005 J. Chem. Phys. 122
084119) program. The aspect ratio and surface passivation (1 × 1 and 2 × 1 reconstructions)
along with the size of the nanorods which leads to quantum confinement along all three
dimensions, significantly affect their electronic properties. The structures of the nanorods also
show interesting behaviour as, depending on their characteristics, they can in certain areas
retain the structure of bulk silicon while in other parts significantly deviate from it.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The applications of silicon nanocrystalline particles have
become an extensive and attractive area of research due to their
diverse properties. Some of the most important applications
involve energy conversion in photovoltaic solar cells [2],
biomedical fluorescent imaging as biological sensors [3],
and their electrical response in nanoelectronics as field-effect
transistors [4, 5], logic circuits [6], light-emitting diodes [7]
etc.

The physical and chemical properties of Si nanoparticles
can be greatly influenced by their surface chemistry, size and
shape. As the size of silicon nanoparticles approaches the
quantum regime, their electronic properties are substantially
altered compared to a bulk material, due to the strong effect
of quantum confinement [8]. Ultrathin silicon nanowires
(SiNWs), for instance, demonstrate a blue shift in their

3 Author to whom any correspondence should be addressed.

optical spectra [9], while silicon quantum dots (QDs) can emit
coloured light depending on their synthetic preparation [10].
Quantum confinement induces photoluminescence in the
visible range of silicon particles by increasing their optical
gap compared to bulk silicon. Hydrogen-passivated silicon
nanoparticles have been a promising material for theoretically
investigating the properties of silicon nanostructures, due to
their relative simplicity in modelling and for computationally
studying them, compared to nanocrystals from other materials.

Various techniques have been developed for experimen-
tally generating hydrogenated silicon nanoparticles. Electro-
chemical dispersion of bulk silicon followed by ultrasonic frac-
turing produces oxidized nanocrystalline silicon, which results
in a porous layer of one-dimensional crystalline nanowires and
zero-dimensional nanocrystals, when treated with hydrofluo-
ric acid (HF) [11]. These nanoclusters are mainly covered
by mono-(SiH) and di-(SiH2) hydride groups and have a very
low contamination in SiO2. Hirata et al [12] reported that
they were able to obtain completely pure H-passivated silicon
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nanoparticles when oxygen-terminated nanocrystalline silicon
films were prepared by using silicon evaporation in an ultra-
high vacuum with oxygen and argon radicals and then treated
by HF.

Synthesized SiNWs can be growth-controlled, allowing
them to be developed not only in different directions but also in
various transverse shapes (square, pentagon, hexagon etc) [13].
For restricting the growth to occur along one direction, it is
required that the symmetry is broken during growth [14]. The
most frequently reported growth directions are the [110], [111],
and less frequently, the [112] direction [15]. To our knowledge
the thinnest nanowire reported in literature has a diameter of
∼1.3 nm [16].

The surface of H-passivated Si nanoparticles determines
to a great extent their optical behaviour. There are three
surface reconstructions reported in the literature. The (1 × 1),
which contains the highest coverage of hydrogen on the surface
atoms, the (2 × 1), which is formed by the reconstruction
of unreconstructed H-passivated Si surfaces to (2 × 1)
monohydride phases and the (3 × 1) reconstruction [17]. John
Northrup [18], using first principles total energy calculations
on (2 × 1), (1 × 1) and (3 × 1) H-terminated Si surfaces,
showed that at low values of H chemical potential the (2 × 1)
surface reconstruction is more stable, while the (3 × 1) and
(1 × 1) reconstructions occur when the chemical potential of
hydrogen is increased respectively. These conclusions were
also confirmed by the computational work of Puzder et al
[19] who have used quantum Monte Carlo (QMC) and density
functional theory (DFT) calculations to study the formation
energies of small spherical H-passivated Si nanocrystals.

Depending on the number of atoms that each studied
system contains, different computational approaches can be
used. In general, tight-binding (TB) methods are used
to investigate systems containing from several hundreds to
thousands of atoms, DFT methods have been used so far
for sizes up to few hundred atoms, combining the time-
dependent density functional theory (TDDFT) approach to
study excited states and optical spectra [20]. Other methods
for studying excited states are based on the self-energy of
a many-body GW approach [21] (direct product of a Green
Function and a dynamically screened interaction W). Some
accurate calculations which have been carried out for small
silicon nanoclusters and periodic silicon systems have used
quantum Monte Carlo methods [22].

Computational works that are studying silicon nanowires
and use DFT methods usually take advantage of the
periodicity of a crystalline structure in order to perform
calculations about their properties. These works usually
employ different techniques for extracting results about
electronic properties since DFT within either the generalized
gradient approximation (GGA) or local density approximation
(LDA) [23] underestimates band gaps, in some cases even by
a factor of two [8]. Despite this, DFT can predict reliably the
geometries and the band structure when varying the diameter
or the surface of these nanoclusters.

In this work we present a DFT study of silicon nanorods
with more than 1000 atoms. In order to perform DFT
calculations on such a large scale we do not take advantage

of periodicity or symmetry (as in nanowires), but we perform
calculations directly on the entire nanorods by using the
ONETEP program for linear-scaling DFT with plane-wave
accuracy [1].

Details about the linear-scaling method developed in the
ONETEP program, are given in section 2. In sections 2.1
and 2.2 we describe the procedure we have followed to
study the nanocrystals and some validation tests we have
performed to confirm the reliability of the parameters used
in our calculations. In section 3, we present our results and
discuss them in the context of other works from the literature.
Finally our conclusions are summarized in section 4.

2. Theoretical approach

The DFT calculations were performed within the GGA method
using the Perdew, Burke and Ernzerhof (PBE) exchange–
correlation functional [24]. For the ab initio DFT calculations,
the ONETEP [1] software package was used, while for
the tight-binding DFT calculations, we used the DFTB+
code [25].

ONETEP [1] is a linear-scaling approach for DFT
calculations, which is based on the reformulation of DFT in
terms of the one-particle density matrix. In terms of Kohn–
Sham orbitals, the density matrix is represented as

ρ(r, r′) =
∞∑

n=0

fnψn(r)ψ∗
n (r

′), (1)

where ψn(r) is a Kohn–Sham orbital and fn is its occupancy.
An equivalent representation is

ρ(r, r′) =
∑

αβ

φα(r)K αβφ∗
β(r

′), (2)

where φα(r) are localized non-orthogonal functions [26] and
K αβ , which is called the density kernel, is the representation
of fn in the duals of these functions. Most commonly
in linear-scaling approaches the density kernel is optimized
while keeping φα(r) in some suitable form (e.g. pseudoatomic
orbitals). Linear scaling is achieved by truncating the
density kernel, thus exploiting the exponential decay of the
density matrix (in non-metallic systems [27]). A particular
characteristic of ONETEP is that the localized functions
φα(r) are also optimized during the calculation, subject
to a localization constraint, and are thus known as non-
orthogonal generalized Wannier functions (NGWFs [28]). The
NGWFs are expanded in a basis set of periodic sinc (psinc)
functions [29], which are equivalent to a plane-wave basis as
they are related by a unitary transformation. The fact that
NGWFs are optimized in situ allows plane-wave accuracy to
be achieved with only a minimal number of NGWFs (and
hence the smallest possible sparse matrices); furthermore, the
psinc basis is independent of atomic positions and provides a
uniform description of space; ONETEP calculations are not
affected by basis set superposition error [30]. The code is
parallelized and allows calculations to be performed on large
systems containing thousands of atoms [31, 32].
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DFTB+ [25] is a density functional tight-binding code
which exploits the sparsity of the TB equations and uses
conventional dense diagonalization algorithms to construct
the density matrix for delivering a reliable and efficient
implementation. The matrix size increases linearly with the
number of atoms, for large systems, while all the matrices are
real for both periodic and non-periodic systems. The method
developed in the code is based on the second-order expansion
of the Kohn–Sham DFT energy with respect to charge density
fluctuations [33]. A generic expression for the total self-
consistence charge (SCC) DFTB energy is given by

EDFTB =
occ∑

n

〈ψn |Ĥ0|ψn〉 + 1
2

N∑

α,β

γαβ�qα�qβ. (3)

The first term runs over the occupied single-particle
wavefunctions ψn and calculates the Hamiltonian energy for
an input density n0, which is equivalent to a common standard
non-self-consistent TB scheme. The second term represents
the second-order extension of the Kohn–Sham energy of
wavefunctions and potentials centred on atoms α and β . The
charge fluctuations�qα and�qβ of atoms α and β are defined
by a SCC redistribution of Mulliken charges. γαβ consists of a
long-range pure Coulomb term and an exponentially decaying
short-range function S:

γαβ = 1

Rαβ
− S(Rαβ ,Uα,Uβ), (4)

where Rαβ is the distance between atoms α and β , and Uα and
Uβ are the Hubbard parameters for these atoms respectively.

2.1. Methodology

The H-terminated silicon nanorods were constructed with
Accelrys Materials Studio4. The [111] growth direction has
been chosen to be the preferential elongation axis, since this is
the mainly observed growth direction in several experimental
works [15]. All the constructed nanorods have a fixed length
of 5.0 nm with diameters varying from 0.8 nm to 1.3 nm.
The nanostructures were carefully shaped in order to avoid
the existence of SiH3 on the surface when saturating the
dangling bonds of silicon atoms with hydrogen, as these
groups are highly reactive [15]. Thus, the surface of the
(1 × 1) unreconstructed H-passivated Si nanorods contained
both dihydrides (SiH2) and monohydrides (SiH), while the
(2 × 1) reconstruction surface contained only monohydrides
to allow a uniform distribution of reconstructed units. The
nanorods were placed in a periodic box with a minimum 1 nm
vacuum region to eliminate periodic interactions.

The nanorods were then pre-optimized, using tight-
binding DFT, within a 0.05 eV Å

−1
force tolerance. The pre-

optimization is required to distinguish the preferred tendencies
for reconstruction, mainly for the (2 × 1) nanostructures. Any
single dangling bonds that remained after the pre-optimization
on the surface Si atoms were capped with hydrogens.

A full geometry optimization was then carried out with
DFTB+ [25] for all the nanoclusters, and afterwards, the

4 Accelrys Materials Studio Inc Accelrys Software, ©2001–2007.

Table 1. Comparison of Si–Si and Si–Si bond lengths as calculated
with CASTEP [34], NWCHEM [35], ONETEP [1] and DFTB+ [25]
for Si29H36.

Interatomic distances (Å)

Interaction ONETEP CASTEP NWCHEM DFTB+
Si–Sia 2.326 2.335 2.343 2.363
Si–Sia 2.319 2.325 2.337 2.339
Si–Ha 1.503 1.487 1.509 1.503
Si–Ha 1.498 1.480 1.503 1.498

a Si–Si neighbour distances of inner shell.
b Si–Si neighbour distances of outer shell.
c Si–H distances of Si atoms containing a single H.
d Si–H distances of Si atoms containing two H.

coordinates of the optimized structures were imported into
the ONETEP code, to perform DFT energy and electronic
properties calculations, using a psinc kinetic energy cut-off of
300 eV. 6 NGWFs with 7.0 Å radius, for each Si atom, and
1 NGWF with 6.0 Å radius, for each H atom, were found to
be sufficient for the representation of Si and H atoms in the
calculation, after several tests on smaller systems, which are
summarized in the next section.

2.2. Validation tests

For choosing suitable parameters for our ONETEP calculations
several tests on the small Si29H36 quantum dot and the
Si242H140 nanoplate model clusters have performed using a
variety of approaches.

In the case of Si29H36, DFT geometry optimizations, using
the PBE exchange–correlation functional, were performed
with ONETEP [1], CASTEP [34] (plane-wave DFT),
NWCHEM [35] (Gaussian basis set DFT) and DFTB+ [25]
(tight-binding DFT). An energy tolerance of 0.2 meV per
atom and a force tolerance of 0.05 eV Å

−1
were used as

convergence criteria for CASTEP, ONETEP and DFTB+. For
the NWCHEM calculations, the 6-31+G* basis set was used
to describe both Si and H atoms.

As can be observed from the results summarized in
table 1 the optimized structures have the central atom in a
tetrahedral coordination, which approaches almost identically
the symmetry of a Si atom in bulk silicon, while the surface
interatomic distances of neighbour silicon atoms are slightly
shorter than the core. Similar geometries were obtained by
Sundholm [36] in his simulations on Si29H36, using DFT and
coupled-cluster methods.

It is worth noting the remarkable agreement between the
Si–H bond lengths described by ONETEP and DFTB+, even
though the two programs use different approximation methods
but still the same exchange–correlation functional. On the
other hand, the Si–Si neighbour distances as calculated with
ONETEP tend to agree better with the distances calculated by
CASTEP. Both programs are ab initio DFT codes which use
plane waves to describe the electronic wavefunction in contrast
with NWCHEM which uses Gaussian basis sets.

Previously, calculations on crystalline silicon with
ONETEP obtained the best results when 9 NGWFs are used

3



J. Phys.: Condens. Matter 22 (2010) 025303 N Zonias et al

Figure 1. ONETEP optimized structures of Si29H36 and Si242H140.

Figure 2. Schematic representation of symmetric hydrogens (before geometry optimization) and ‘canted’ hydrogens (after geometry
optimization) located on a part of the surface of the (1 × 1) reconstructed Si766H462 nanorod.

for representing the Si atoms [37]. However, we found that by
reducing the NGWFs from 9 to 6 and the kinetic energy cut-
off from 650 to 300 eV, the final geometries of Si29H36 change
only slightly (∼1% in bond lengths and angles) and are still
acceptable, as these errors are less than those due to the other
approximations involved in DFT calculations.

The band gap of Si29H36, using ONETEP within the local
density approximation (LDA) for the optimized structure, was
3.75 eV, in good agreement with the LDA band gap calculated
by Puzder et al [38] (3.6 eV) and with the band gap reported by
Wang et al [39] (3.67 eV). When the B3LYP [40] exchange–
correlation functional is used, the ONETEP calculation yields
a 5.3 eV band gap, which is in excellent agreement with QMC
results from reference [38] (5.3 eV) and B3LYP/6-31G(d)
calculations from reference [39] (5.32 eV). Unfortunately the
current implementation of B3LYP in ONETEP is not linear
scaling and does not allow us to study systems much larger than
Si29H36. The experimental excitation threshold of 3.5 eV [41]
given to a hydrogenated Si29 nanoparticle mainly refers to the
Si29H24 [42–44].

For testing the geometry optimization effectiveness in
achieving surface reconstructions, sample calculations with
ONETEP and DFTB+ using a slice from a 2.0 nm thick
nanorod (Si242H140) have been performed. The structure
was constructed with 12 free dangling bonds on the surface
Si atoms, to allow 6 reconstructions to happen. After
several geometry steps, the 6 reconstructions did occur. With
ONETEP, the calculations were performed using a force
tolerance of 0.05 eV Å

−1
and a kinetic energy cut-off of

650 eV. In contrast with Si29H36 tests, in which an effectively
infinite value for the kernel cut-off distance was used, in
this case, the spatial cut-off of the density kernel was set to
13.23 Å. The optimized structure is shown in figure 1, were the
reconstructed Si–Si bonds have been highlighted. The DFTB+

Figure 3. Formation energies of the (2 × 1) reconstructed (blue) and
(1 × 1) unreconstructed (red) nanorods.

optimized structure is in close agreement with the ONETEP,
similar to Si29H36.

3. Results and discussion

3.1. Structural properties

Each diagram of figure 4 shows two kinds of distribution;
the distribution of nearest neighbour interatomic distances
between silicon atoms along the caps of the nanorod and the
distribution along the main part. As expected, due to the
different shape between the caps and the main body of the
nanorod, the deformation of interatomic distances creates a
bigger dispersion of points, which becomes more apparent in
the thinnest (2×1) nanostructure, and as the diameter increases
the fitting curves between the caps and the main part tend
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Figure 4. Diagrams of nearest neighbour interatomic distances in Si532H224 (a), Si532H308 (b), Si766H318 (c), Si766H402 (d), Si1186H366 (e),
Si1186H462 (f). Si–Si bond lengths located at the caps are represented with dots while bond lengths located in the main part are shown with
circles.

to coincide. As can be observed, there is a homogeneous
distribution of the Si–Si distances from the centre of mass,
‘core’, which is later disrupted as we reach the surface. Si–
Si bond lengths located at the inner part are distributed around
2.36 Å, which is the Si–Si distance in bulk silicon calculated
using the PBE exchange–correlation functional, for all the H-
passivated silicon nanostructures. Approximately 25% of the
total volume for the thinnest nanorod maintains the structural
properties of the bulk crystal and as the diameter of the
nanorod increases this can extend up to 45% for the (2 × 1)
reconstructed nanorods, while for the (1 × 1) unreconstructed
nanorods this range goes approximately from 60% to 75%.

Moving along the diameter of the nanorod from the core
to the surface, structural differences between the reconstructed
(2×1) and unreconstructed (1×1) nanostructures emerge. Si–
Si neighbour distances of the (2 × 1) reconstructed nanorods
present a non-uniform behaviour across the whole volume,
having a range between 2.33 and 2.42 Å. The (1 × 1)
reconstructed surfaces present a similar dispersion of Si–Si
interatomic distances for all the studied diameters, in which
the bond length becomes significantly shorter (∼2.33 Å) while
the points of the inner part are equally dispersed around the
fitting curve in all the (1 × 1) nanorods. This tendency, is
also observed in several theoretical studies on H-passivated
silicon nanowires [15, 45] and can be justified by the steric
hindrance the hydrogen atoms exert on the silicon atoms of the
surface. The Si–H interatomic distances are distributed around
1.50 Å ,which are in agreement with the results obtained
by Nolan et al [45] (1.53 Å), who have performed DFT
calculations with the PBE exchange–correlation functional on
silicon nanowires with diameters of about 1 nm. Despite

that, they have found that a ‘canted’ conformation between
surface hydrogen atoms does not occur in (1×1) reconstructed
surfaces, while our results show that the ‘canted’ conformation
can actually occur in specific parts of the surface, as proposed
also by Vo et al [15]. Schematic representations of ‘canted’
hydrogens observed in our structures are shown in figure 2.

Furthermore, the diagrams clearly show a grouping of
points on specific areas of interatomic distances as we move
from the centre to the surface of each nanorod, mainly at the
main part (away from the caps). This is another factor in
support of structural stability and a homogeneous dispersion
along the length of the nanorod. Although this pattern applies
in the majority of the studied nanostructures, the difference
observed, mainly in the Si766H318 nanorod (diagram (c) of
figure 4), results from the presence of both dimers (SiH2) and
monomers (SiH) on the surface.

3.2. Electronic properties

In order to investigate the electronic properties of the (1 ×
1) unreconstructed Si532H308, Si766H402, Si1186H462 and (2 ×
1) reconstructed Si532H224, Si766H318, Si1186H366 nanorods
and the influence by their surfaces and aspect ratios, DFT
calculations using ONETEP, on the TB optimized structures
have been performed.

The stabilities of the nanorods were determined by calcu-
lating their formation energies (Ef) using the formula [46]:

Ef = (E tot − (nH EH))

nSi
− ESi, (5)

5
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Figure 5. Energy band gaps of optimized H-terminated Si structures calculated with ONETEP [1] using the PBE exchange correlation
functional [24].

Figure 6. Density of states (DOS) of Si532H308, Si766H402, Si1186H462, Si532H224, Si766H316 and Si1186H366 as calculated with ONETEP [1]. The
DOS for bulk silicon (dotted line) has been calculated with CASTEP [34]. In both programs the PBE exchange–correlation functional was
used.

where E tot is the total energy of the Si nanorod, nSi and nH are
the number of silicon and hydrogen atoms contained in it, ESi

is the energy of one Si atom in a bulk silicon crystal and EH the
energy H atom in a H2 molecule. For calculating the energies
ESi and EH single point energy calculations were performed
with ONETEP for bulk silicon and for a H2 molecule.

The results plotted in figure 3 confirm at first, the
stability of the studied nanoclusters, with formation energies
lying between −2.0 to −1.0 eV per Si atom. The (1 ×
1) unreconstructed nanorods with the highest coverage in
hydrogen, have lower formation energies compared to the
(2 × 1) reconstructed nanorods. Secondly, figure 3 reveals that
as the number of atoms increases the stabilities decrease and
as the size of our nanoclusters approaches the bulk limit, they
are expected to become zero. The stabilities of the Si532H224

and the Si766H316 nanorods appear very similar and this can
be justified by the presence of dihydride (SiH2) groups on
the (2 × 1) reconstructed surface of the Si766H316, which
induce less strain between the reconstructed surface parts and
consequently lower the formation energy.

An important feature related to the optical properties of
silicon nanostructures is their band gap. It has been observed
that the energy band gaps of silicon nanostructures can be

affected by their diameter, surface structure and the growth
direction, in the case of silicon nanowires. As the diameter
of a nanostructure is decreased the energy band gap increases,
due to quantum confinement effects [8]. This phenomenon
is observed in the majority of the silicon structures studied
at the nanoscale such as quantum dots [19], nanowires [47]
or nanotubes [48]. In the case of silicon nanowires, this
trend also applies not only on structures with different growth
directions but also between nanowires with different surface
reconstructions [49].

The values reported in the table of figure 5 represent the
HOMO–LUMO gap obtained directly from GGA-DFT calcu-
lations using the PBE exchange–correlation functional. Al-
though it is known that GGA methods generally underestimate
energy band gaps they can still provide qualitative trends of op-
tical gaps. A self-energy correction method, such as the GW
approach, has not been attempted due to the prohibitive amount
of computer time such a calculation would require in its appli-
cation to our nanoclusters.

Our calculations show a reduction of the band gap as the
diameter of the nanorod is increased. Although this work
is on non-periodic hydrogenated silicon nanorods, our band
gaps appear to follow trends similar to works on periodic

6
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(a) (d)

(b) (e)

(c) (f)

Figure 7. Representations of HOMO (red—left and top) and LUMO (green—right and bottom) orbital density plots for Si532H224 (a),
Si532H308 (d), Si766H318 (b), Si766H402 (e), Si1186H366 (c), Si1186H462 (f) nanorods. Each diagram shows a horizontal view from each orbital,
parallel to the nanorod’s growth axis, and a vertical view, by clipping the nanorod through a plane at its centre of mass. The isosurfaces were
generated by using an isovalue of 1 × 10−5 e

α3
0

.

H-terminated silicon nanowires. For instance, Vo et al [15]
reported that both the (1×1) and (2×1) reconstructed surfaces
of [111] grown silicon nanowires reduce their band gaps from
2.12 eV to 0.85 eV and from 1.54 eV to 0.84 eV respectively,
as their diameter increases from 1.1 to 3.0 nm, by performing
first principles calculations. Zhao et al [8], using the LDA
approach including GW corrections [50], found that the band
gap of [111] Si nanowires also decreases from 2.3 to 0.8 eV as
their thickness increases from 0.9 to 3.2 nm. In a similar work
by Saita et al [51], the energy band gaps of [111] Si nanowires
with diameters 0.55 to 1.0 nm varied from 2.83 to 1.90 eV.

Figure 5 also shows that the reconstructed surfaces tend
to have smaller band gaps from the unreconstructed. Although
this trend is obvious in the nanorods with diameters 0.8 nm
the coincidence of the lines between the reconstructed and
unreconstructed surfaces for the 1.1 nm and the 1.3 nm thick
nanorods indicates the small role played by the surface as the
diameter of the nanorods increases.

The reduction of the band gap can also be observed in
figure 6. The plots show the total electronic density of states
(DOS) of the nanoclusters Si532H308, Si766H402, Si1186H462,

7
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Si532H224, Si766H318 and Si1186H366 and of bulk crystalline
silicon. While the DOS peaks placed in the valence band
area are in close agreement between the nanorods and the bulk
silicon, there is strong disagreement for the conduction bands.
This phenomenon was also observed in the work of Skylaris
and Haynes [37] who performed DFT calculations within the
LDA scheme on a 1000-atom silicon lattice and concluded that
the ONETEP NGWFs are usually only capable of describing
correctly the valence and the low-lying conduction bands.
The DOS of the nanorods in the valence area for the (1 ×
1) reconstructed surfaces follow closely the DOS of bulk
silicon. This also justifies the use of H-passivated silicon
nanoclusters for drawing conclusions regarding the properties
of pure silicon nanostructures.

The ability of the ONETEP code to perform DFT
calculations directly on nanostructures containing thousands
of atoms allows us also to obtain the molecular orbitals for
entire nanostructures. Isosurfaces of the HOMO and LUMO
orbital densities of the studied hydrogenated silicon nanorods
are given in figure 7.

The HOMO orbitals of all the nanostructures and
the LUMO orbitals of Si532H224, Si532H308, Si766H402 and
Si1186H366 are localized at the centre of mass. The LUMO
orbitals are degenerate, and in all the studied nanorods they
intersect the growth axis at an angle. Surprisingly the LUMO
orbitals of the Si766H402 and the Si1186H462 show a localization
closer to the caps of the nanorod, with the LUMO orbital
of Si1186H462 localized exclusively at the caps. A quite
similar phenomenon was observed in the LUMO orbitals of
reconstructed and unreconstructed quantum dots with 0.8 nm
diameter [19], although in this case the localization of the
orbital is shifted from the core to the surface when going from
an unreconstructed (1 × 1) to a reconstructed (2 × 1) surface.
As the hydrogen passivation of the surface provides a relatively
small barrier for electrons and holes, the HOMO and LUMO
orbitals spill out more from the core as the diameter is reduced.

While computational studies on silicon nanowires have
shown the dependence of the band gap on the growth direction,
diameter and surface reconstruction, our results show that
these factors also strongly affect the electronic properties of
H-passivated nanorods, despite the fundamental differences
between finite, short nanorods and infinite length nanowires.
The shift in the localization of the HOMO and LUMO
densities, from the core to the surface for the LUMO,
while the HOMO remains in the core, can be compared to
the transformation of the energy band gap from ‘direct’ to
‘indirect’.

4. Conclusions

We have presented a computational study by DFT of silicon
nanorods with varying aspect ratios and surface passivation by
hydrogen, without use of symmetry or periodicity (as in the
case of nanowires). The DFT calculations were performed
on the entire structures with more than 1000 atoms by using
the ONETEP linear-scaling DFT program. This approach has
allowed us to examine the structural, energetic and electronic
properties of the nanorods at the atomistic ab initio level of
detail.

Our calculations revealed that the inner part of the nanorod
retains a structure close to bulk Si, while approaching the
surface this stability is distorted. In the (1×1) unreconstructed
nanorods Si–Si bond lengths become more condensed, while in
the (2 × 1) reconstructed nanorods the range of the Si–Si bond
length distribution becomes wider and larger as we move from
the ‘core’ to the surface. Furthermore, the (1 × 1) surfaces
adopt the ‘canted’ conformation between neighbour H atoms,
which is consistent with several theoretical studies reported
previously.

The (1 × 1) unreconstructed H-passivated nanorods have
higher stabilities compared to the (2 × 1) reconstructed
nanostructures, which tend to decrease as the diameter of the
nanorod is increased. According to our calculations, when the
diameter of the nanorod is extended by 5 Å, formation energies
per Si atom decay almost by 1 eV. Similarly, a reduction of
∼0.5 eV for the (1×1) nanorods and of ∼0.3 eV for the (2×1)
nanorods in the HOMO–LUMO band gap is observed when
their diameter is increased from 8–13 Å.
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